
Parallel Performance of Pure MATLAB “M-files” versus “C-code” as
applied to formation of Wide-Bandwidth and Wide-Beamwidth SAR

Imagery

Dr. John Nehrbass1 nehrbass@ee.eng.ohio-state.edu 937-904-5139,
Dr. Mehrdad Soumekh2 msoum@eng.buffalo.edu 716 645-3115 x 2138,
Dr. Stan Ahalt1 sca@ee.eng.ohio-state.edu 614-292-0068,
Dr. Ashok Krishnamurthy1 akk@ee.eng.ohio-state.edu 614-292-5604,
Dr. Juan Carlos Chaves1 jchaves@arl.army.mil 301-394-0408
1 Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210
2 Deparment of Electrical Engineering, State University of New York at Buffalo,
 332 Bonner Hall, Amherst, NY 14260

Applicable Topic Areas:

• Case Study Examples of High Performance Embedded Computing
• Performance Modeling and Simulation for Benchmarking Embedded Systems
• Software Architecture, Reusability, Scalability, and Standards

Abstract

Once an algorithm is stable and leaves the research and development stage, it can be optimized for
particular hardware architectures and run in production mode. Most code written never gets to this
advanced stage, however the need for speed may be critical for realistic simulations. Likewise, one may
be impressed with the long run times of simulations, which run for weeks or longer while using hundreds
of processors in parallel to provide the needed information. However, it is often overlooked that the
resources required to place such problems into formats suitable for such lengthy simulations many span
several years. Grid quality, a labor-intensive step, supercedes numerical convergence criteria for accurate
RCS predictions. Similarly, it is rare that an author is able to publish after only one run on the first bug
free version of their code.

To the extent that tools can allow rapid prototyping, increased value is achieved. For scientists in
the area of Signal and Image processing, MATLAB is often the tool of choice. MATLAB allows extremely
rapid prototyping and debugging of complicated studies with a minimal of computer science expertise.
Frequently an idea is implemented in MATLAB code and tested on small data sets. These small data sets
provide outputs in sufficient time such that performance studies can be conducted. However, as the
studies progress and the same codes are used on much larger real data sets, run times may grow to
unrealistic lengths. This may force the research scientist to use another implementation language, such
as C and MPI, and implement the code on parallel architectures. This code conversion is undesirable,
time consuming, and error prone.

An alternative and convenient way to accomplish run time reduction is to use the MatlabMPI suite
written by Jeremy Kepner of MIT. This suite of pure MATLAB code allows one to simulate many of the
MPI functions within MATLAB. It accomplishes inter-processor communication via disk I/O and a common
disk drive. MATLAB software requires a license per computational node. Thus if one runs MatlabMPI on a
shared memory machine, only one MATLAB license need be used for any given implementation. When
run a distributed system, such as the IBM SP2/3 or a set of Linux clusters, then a license for each
grouping of machines is required. For large jobs, (i.e. 256 processors or more) the additional costs of
licenses may not be justified. Realizing the combined value of MATLAB, MatlabMPI, the High
Performance Computational Modernization Program (HPCMP), and distributed architectures, an
alternative is presented. MatlabMPI works by creating scripts that contain instructions for starting
individual MATLAB processes, one for each processor desired on a given node. Executable code can be
substituted within the scripts wherever a MATLAB process was identified. The MATLAB compiler toolbox
may be used to create MATLAB executable code (MEX) fused within a C wrapper. The C wrapper simply
allows one to easily define the rank of a launched process and pass this information to the MEX code.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Parallel Performance of Pure MATLAB M-files versus C-code as applied
to formation of Wide-Bandwidth and Wide-Beamwidth SAR Imagery

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical Engineering, The Ohio State University,
Columbus, Ohio 43210; Deparment of Electrical Engineering, State
University of New York at Buffalo, 332 Bonner Hall, Amherst, NY 14260

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

50

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

These altered scripts no longer require any MATALB licenses at run time. Thus distributed systems can
now affordably be added to the suit of resources that MatlabMPI can be used on. This presentation will
illustrate the comparison of timing between running pure parallel MATLAB code with the automatically
created C compiled version of the same code. A sample speed up comparison is illustrated below.
 As rapid prototyping is the main focus of this effort, the illustration is implemented on a fairly
complicated image formation code that generates large SAR images. Initial development was conducted
on smaller sets of simulated data and thus relatively small images were produced. However, the real
applications needed to generate images with dimensions of 4 by 7 kilometers at resolution of 3 meters,
which generates images of dimensions 1333 pixels by 2333 pixels. The phase history processed
consisted of over 18,000 slow time samples each containing thousands of frequencies or fast time
complex data samples. When processing real data on 2Ghz Pentium IV Pc machines, run times spanned
from over 1 hour to approximately 2 hours. The variations in run times were caused by variations in
optimizing parameters and availability of RAM. After a very modest effort of porting this code to HPC
resources and using parallel processors to run the same parameter sets, run times were reduced to less
than 2 minutes. It is believed that with a finer grain parallization, run times will be reduced to less than 15
seconds and thus achieve real time processing claims. These results, images, timings, and details will be
presented at the HPEC conference.

The formation of general wide-bandwidth and wide-beamwidth SAR imagery follows an approach
that is based on the SAR wavefront theory. The SAR wavefront theory was introduced in the past
decade for approximation-free image formation. Meanwhile, the fundamental SAR signal properties that
are established via this theory have been proven to be useful not only for image formation but also for
addressing pre- and post-processing problems that are encountered in practical SAR systems. These
include RFI suppression, suppression of azimuthal spatial aliasing in wide-beamwidth SAR systems,
motion compensation and auto-calibration, geo-registration and calibration of multipass data for change
detection. The specific issue that is examined in this study is the large integration angle of these SAR
systems; in this case, the user faces processing relatively large FFTs for Doppler processing to avoid
azimuthal spatial aliasing. A process that we refer to as subaperture-based digital spotlighting is used
to circumvent the above-mentioned problem; this also makes the implementation ideal in a multi-
processor environment.

In order to facilitate a more efficient I/O the phase history data is broken up in to many files
(subapertures), each containing only hundreds of subsets of the total slow time data sets. Processing
through each of the files is done in an outer most loop. Auto focusing through one file is independent of
processing through another, and thus this technique is an excellent candidate for parallel implementation.
If 1,2,3,6,9, or 18 processors are used, the outer loop can be perfectly load balanced. Likewise, an inner
loop independently performs an FFT over sub-apertures. This loop is also optimal for parallization. For
this data set 72 sub-apertures are possible and thus the code was scaled from 1 to 72 processors.

This publication was made possible through support provided by DoD HPCMP PET activities through Mississippi State University under the
terms of Agreement No. #GS04T01BFC0060. The opinions expressed herein are those of the author(s) and do not necessarily reflect the views
of the DoD or Mississippi State University.

10/1/2003
Dr. Nehrbass - The Ohio State University 1

Parallel Performance of Pure
MATLAB "M-files" versus "C-
code“ as applied to formation
of Wide-Bandwidth and Wide-
Beamwidth SAR Imagery

Nehrbass@ee.eng.ohio-state.edu

10/1/2003
Dr. Nehrbass - The Ohio State University 2

Parallel Performance of Pure MATLAB “M-files” versus “C-
code” as applied to formation of Wide-Bandwidth and

Wide-Beamwidth SAR Imagery

Dr. John Nehrbass1

Dr. Mehrdad Soumekh2

Dr. Stan Ahalt1

Dr. Ashok Krishnamurthy1

Dr. Juan Carlos Chaves1

1 Department of Electrical Engineering, The Ohio State
University, Columbus, Ohio 43210

2 Deparment of Electrical Engineering, State University of
New York at Buffalo,
332 Bonner Hall, Amherst, NY 14260

10/1/2003
Dr. Nehrbass - The Ohio State University 3

Outline

• MatlabMPI Overview

• Possible modifications/customizations

• SAR Imagery

• Parallel Performance “M” vs “C”

• Future Work and activities

10/1/2003
Dr. Nehrbass - The Ohio State University 4

MatlabMPI Overview

References:

• http://www.mathworks.com/

• The latest MatlabMPI information,
downloads, documentation, and
information may be obtained from

http://www.ll.mit.edu/MatlabMPI

10/1/2003
Dr. Nehrbass - The Ohio State University 5

MPI & MATLAB
• Message Passing Interface (MPI):

– A message-passing library specification

– Specific libraries available for almost every kind of
HPC platform: shared memory SMPs, clusters,
NOWs, Linux, Windows

– Fortran, C, C++ bindings

– Widely accepted standard for parallel computing.

• MATLAB:

– Integrated computation, visualization,
programming, and programming environment.

– Easy matrix based notation, many toolboxes, etc

– Used extensively for technical and scientific
computing

– Currently: mostly SERIAL code

10/1/2003
Dr. Nehrbass - The Ohio State University 6

What is MatlabMPI?

• It is a MATLAB implementation of the MPI standards that allows
any MATLAB program to exploit multiple processors.

• It implements, the basic MPI functions that are the core of the
MPI point-to-point communications with extensions to other MPI
functions. (Growing)

• MATLAB look and feel on top of standard MATLAB file I/O.

• Pure M-file implementation: about 100 lines of MATLAB code.

• It runs anywhere MATLAB runs.

• Principal developer: Dr. Jeremy Kepner (MIT Lincoln Laboratory)

10/1/2003
Dr. Nehrbass - The Ohio State University 7

General Requirements

• As MatlabMPI uses file I/O for communication, a
common file system must be visible to every
machine/processor.

• On shared memory platforms: single MATLAB license
is enough since any user is allowed to launch many
MATLAB sessions.

• On distributed memory platforms: one MATLAB
license per machine / node.

• Currently Unix based platforms only, but Windows
support coming soon.

10/1/2003
Dr. Nehrbass - The Ohio State University 8

Basic Concepts

• Basic Communication:
– Messages: MATLAB variables transferred

from one processor to another

– One processor sends the data, another
receives the data

– Synchronous transfer: call does not return
until the message is sent or received

– SPMD model: usually MatlabMPI programs
are parallel SPMD programs. The same
program is running on different
processors/data.

10/1/2003
Dr. Nehrbass - The Ohio State University 9

Communication architecture

• Receiver waits until it detects the existence of the lock file.

• Receiver deletes the data and lock file, after it loads the variable from
the data file.

load

detect

Sender

Variable Data file
save

create
Lock file

Variable

Receiver
Shared file system

10/1/2003
Dr. Nehrbass - The Ohio State University 10

Possible
modifications/customizations

• ssh vs rsh

• Path variables

• System dependent information required
to run MATLAB.

10/1/2003
Dr. Nehrbass - The Ohio State University 11

Master scripts
MatlabMPI creates 2 sets of scripts

Unix_Commands.sh – master script
This contains instructions for launching
scripts on each desired node.

Unix_Commands.node_alias.sh –
This contains instructions for “what” is to
be run on node_alias.

10/1/2003
Dr. Nehrbass - The Ohio State University 12

Unix_Commands.ssh example
ssh hpc11-1 –n ‘cd

/work1/nehrbass/D_6_3x6; /bin/sh
./MatMPI/Unix_Commands.hpc11-1.0.sh
&’ &

ssh hpc11-3 –n ‘cd
/work1/nehrbass/D_6_3x6; /bin/sh
./MatMPI/Unix_Commands.hpc11-3.0.sh
&’ &

10/1/2003
Dr. Nehrbass - The Ohio State University 13

Unix_Commands.hpc11-3.0.ssh
example NCPU=6

matlab –display null –nojvm –nosplash < myprog.m > MatMPI/myprog.5.out &
touch MatMPI/pid.hpc11-3.$!
matlab –display null –nojvm –nosplash < myprog.m > MatMPI/myprog.4.out &
touch MatMPI/pid.hpc11-3.$!
matlab –display null –nojvm –nosplash < myprog.m > MatMPI/myprog.3.out &
touch MatMPI/pid.hpc11-3.$!
matlab –display null –nojvm –nosplash < myprog.m > MatMPI/myprog.2.out &
touch MatMPI/pid.hpc11-3.$!
matlab –display null –nojvm –nosplash < myprog.m > MatMPI/myprog.1.out &
touch MatMPI/pid.hpc11-3.$!
matlab –display null –nojvm –nosplash < myprog.m > MatMPI/myprog.0.out &
touch MatMPI/pid.hpc11-3.$!

Possibly add code to prevent early batch termination

10/1/2003
Dr. Nehrbass - The Ohio State University 14

Batch termination problem
Problem: Master script finishes before all the

spawned processes are done and thus the
batch job terminates prematurely.

Solution: Add the following code at the end of
each node_alias script

mystat=`ls MatMPI |grep Finished.done|wc –l`
while [[$mystat –lt 1]];
do

mystat=`ls MatMPI |grep Finished.done|wc –l`
sleep 15;

done

10/1/2003
Dr. Nehrbass - The Ohio State University 15

Batch termination problem
Solution: create a file called

“Finished.done” at any place in the
MatlabMPI code when code termination
is desired.

This file can be created when ever the
desired global answer is available,
however; it is strongly suggested that a
clean termination, (i.e. all processes are
finished), be implemented.

10/1/2003
Dr. Nehrbass - The Ohio State University 16

Executable Implementation
Problem: There are insufficient licenses

when running on a distributed system of
n nodes.
(Recall – each node requires a valid
license.)

Solution: Convert the working part of the
MATLAB code to an executable that can
run without a license requirement and
modify the existing scripts.

10/1/2003
Dr. Nehrbass - The Ohio State University 17

Implementation Steps
1.) Modify the Matlab MPI code so that the

scripts are automatically modified to run
an executable code.

2.) Create an executable code from “M-file”
scripts.

3.) Run MatlabMPI to generate all the
required scripts automatically.

4.) Submit a batch job to start the scripts.

10/1/2003
Dr. Nehrbass - The Ohio State University 18

Script changes – 1
Change the script from

matlab –display null –nojvm –nosplash < myprog.m >
MatMPI/myprog.5.out &
touch MatMPI/pid.hpc11-3.$!
:

To
myprog.exe 5 > MatMPI/myprog.5.out &
touch MatMPI/pid.hpc11-3.$!
:

10/1/2003
Dr. Nehrbass - The Ohio State University 19

MatlabMPI Changes – 1
This is most easily done by editing the file MatMPI_Commands.m

Change the line

From

matlab_command = [matlab_command ‘ < ‘ defsfile ‘ > ’ outfile];

To

matlab_command = [‘myprog.exe ‘ num2str(rank) ‘ > ‘ outfile];

10/1/2003
Dr. Nehrbass - The Ohio State University 20

Create an Executable – 2
Change the “M-file” to a function and add the 3 lines of code below.

function dummy=myprogf(my_cpu)

% The function myprogf.m was created by converting the
% MATLAB “M-file” script myprog.m to this function.
%
% Other comments
%

% Create MatlabMPI setup commands
global MPI_COMM_WORLD;
load MatMPI/MPI_COMM_WORLD;
MPI_COMM_WORLD.rank = my_cpu;

% The rest of the code myprog.m is appended without change

10/1/2003
Dr. Nehrbass - The Ohio State University 21

Executable wrapper – 2
#include <stdio.h>
#include <string.h>
#include “matlab.h”
#include “multpkg.h”

int main(int argc, char *argv[]) /* Used to call mlfMyprogf */
{

mxArray *my_cpu;
int rank;
rank=atoi(argv[1]);
multpkgInitialize();
my_cpu=mlfScalar(rank);
mlfMyprogf(my_cpu);
multpkgTerminate();
return(0);

}

10/1/2003
Dr. Nehrbass - The Ohio State University 22

Generate All Scripts – 3
• Begin Matlab

• Add the path of MatlabMPI src (ie addpath ~/MatlabMPI/src)
Hint: If the code is having problems seeing the src directory,
either copy the src files to a local directory, or add the above
line inside the source code.

• Add a machine list as desired
(ie machines={};)

• Run the MatlabMPI code to generate the required scripts.
(ie eval(MPI_Run(‘myprogf’,64,machines));)

10/1/2003
Dr. Nehrbass - The Ohio State University 23

Generate All Scripts – 3
• Note that this will automatically launch the codes and scripts and thus

this will run interactively.

• To save all scripts and submit via batch edit the MPI-Run.m function.

Comment out the last two lines of this function as

% unix([‘/bin/sh ‘ unix_launch_file]);
% delete(unix_launch_file);

• This prevents the code from running from within MATLAB
and also saves all the scripts generated by MatlabMPI.

10/1/2003
Dr. Nehrbass - The Ohio State University 24

Submit to batch – 4
• Dilemma:

MatlabMPI generates scripts specific to a list of machines (nodes).

Batch only provides machine information when execution starts.

• It is therefore possible to generate a set of scripts that are not matched
to the resources available at run time.

• A solution to this problem is given on the next few slides.

10/1/2003
Dr. Nehrbass - The Ohio State University 25

Submit to batch – 4
•Place inside a batch script to create the file mat_run.m

echo “[s,w]=unix(‘hostname’);” > mat_run.m
echo “is(s==0)” >> mat_run.m
echo “ machines{1}=w(1:end-1)” >> mat_run.m
echo “ eval(MPI_Run(‘myprogf’,${NCPU},machines));” >> mat_run.m
echo “end” >> mat_run.m
echo “exit” >> mat_run.m

•Run the file “mat_run.m” in MATLAB and capture the output

matlab –nojvm –nosplash < mat_run.m >& mat_run.out

Recall that this only created the required scripts

10/1/2003
Dr. Nehrbass - The Ohio State University 26

Submit to batch – 4
Run the master script on the correct node

If ($UNAME == “hpc11-0”) then
/bin/sh ./MatMPI/Unix_Commands.hpc11-0.0.sh

endif

If ($UNAME == “hpc11-1”) then
/bin/sh ./MatMPI/Unix_Commands.hpc11-1.0.sh

endif

If ($UNAME == “hpc11-2”) then
/bin/sh ./MatMPI/Unix_Commands.hpc11-2.0.sh

endif

If ($UNAME == “hpc11-3”) then
/bin/sh ./MatMPI/Unix_Commands.hpc11-3.0.sh

endif

10/1/2003
Dr. Nehrbass - The Ohio State University 27

MatlabMPI ssh & rsh
• Some UNIX systems require ssh over rsh.

• To avoid problems with having to enter
username / password pairs when launching a
script from a master system to be run on other
systems do the following:

• Step 1. Generate new key pairs:

ssh-keygen –t dsa

Hit enter when prompted for a pass phrase

10/1/2003
Dr. Nehrbass - The Ohio State University 28

MatlabMPI ssh & rsh
• This creates a public private key pair

located in the .ssh directory. The public key
(id_dsa.pub) needs to be copied to a
common location

• Step 2
cd ~/.ssh
cat id_dsa.pub >> ~/.ssh/authorized_keys2
chmod 644 ~/.ssh/authorized_keys2

• For more information please visit
http://www.bluegun.com/Software/ssh-
auth.html

10/1/2003
Dr. Nehrbass - The Ohio State University 29

MatlabMPI ssh & rsh
• The HPCMP resources use kerberos.

http://kirby.hpcmp.hpc.mil/

• When forwarding of credentials is used,
one may be able to launch scripts on
remote systems without implementing the
previous steps.

• On ASC and ARL systems, ssh is
sufficient.

10/1/2003
Dr. Nehrbass - The Ohio State University 30

SAR Imagery

• Very large phase history data set are
subdivided into 18 files (apertures).

• Auto focus through each file –
independent of other files.

• Inner loop breaks aperture into 4 sub-
apertures and performs FFT over each.
Signal processing intense.

10/1/2003
Dr. Nehrbass - The Ohio State University 31

SAR Imagery

Calibrate

Main loop
aperture (i)

Digital Spotlight
aperture

FFT
Sub aperture

Additional
processing

loop 4 times

Final Image

Main loop – 18 apertures

10/1/2003
Dr. Nehrbass - The Ohio State University 32

SAR Imagery

1 2 3 4 5 6 7 8 9 101112 18

18 apertures

4 sub-apertures

10/1/2003
Dr. Nehrbass - The Ohio State University 33

Parallel Performance “M” vs “C”
Total time “M code”

10/1/2003
Dr. Nehrbass - The Ohio State University 34

Total time “C code”

10/1/2003
Dr. Nehrbass - The Ohio State University 35

Speed up - outer loop “M code”

10/1/2003
Dr. Nehrbass - The Ohio State University 36

Speed up - outer loop “C code”

10/1/2003
Dr. Nehrbass - The Ohio State University 37

Scalability “M code”

10/1/2003
Dr. Nehrbass - The Ohio State University 38

Scalability “C code”

10/1/2003
Dr. Nehrbass - The Ohio State University 39

Inner loop time “M code”

10/1/2003
Dr. Nehrbass - The Ohio State University 40

Inner loop time “C code”

10/1/2003
Dr. Nehrbass - The Ohio State University 41

Speedup “M code”

10/1/2003
Dr. Nehrbass - The Ohio State University 42

Speedup “C code”

10/1/2003
Dr. Nehrbass - The Ohio State University 43

Scalabililty-inner loop “M code”

10/1/2003
Dr. Nehrbass - The Ohio State University 44

Scalabililty-inner loop “C code”

10/1/2003
Dr. Nehrbass - The Ohio State University 45

Communication time

72 3x6 = 48.9
36 3x6 = 4.35
72 6x3 = 6.09
36 6x3 = 4.71 24 18 12 9 6 3 1: 3x6

24 18 12 6 1: 6x3
72 36 18 9 1: 9x2
72 36 18 1: 18x1

Less than 0.3 seconds

CPUs type seconds

10/1/2003
Dr. Nehrbass - The Ohio State University 46

System time

10/1/2003
Dr. Nehrbass - The Ohio State University 47

Summary
• “M-file” MatlabMPI code has comparable

performance to compiled “C-code”

• Both methods can be submitted to batch

• “C-code” implementations allow an increase in
processor use without the purchase of
additional licenses.

• MatlabMPI scales well, but can be influenced
when large file transfers are occurring.

10/1/2003
Dr. Nehrbass - The Ohio State University 48

Future Work and activities
• Automate the MatlabMPI suite for executable

versions.

• Customize MatlabMPI to create batch scripts
for all the HPCMP resources

• Matlab via the web – see
“A Java-based Web Interface to MATLAB”

• Application to BackProjection & Wavefront
theory codes.

• HPCMO SIP Benchmark / Profiling Study

	Parallel Performance of Pure MATLAB “M-files” ver
	
	Dr. John Nehrbass1 nehrbass@ee.eng.ohio-state.edu 937-904-5139,�Dr. Mehrdad Soumekh2 msoum@eng.buffalo.edu 716 645-3115 x 2138,
	Dr. Stan Ahalt1 sca@ee.eng.ohio-state.edu 614-292-0068,
	Dr. Ashok Krishnamurthy1 akk@ee.eng.ohio-state.edu 614-292-5604,
	Dr. Juan Carlos Chaves1 jchaves@arl.army.mil 301-394-0408
	1 Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210
	Abstract

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

